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Abstract

A body of literature has evolved for multivariable systems which is concerned

with the placement of closed-loop eigenvalues and/or the question of decoupling. Atten-

tion is turned to the broader question of realizing specified rational trar.;- fer matrices

with a standard feedback conriguration for linear, time-invariant, finite -dimensional,

real, multivariable, dynamical plants in this paper. A complete And pr ,zise realiza-

tion theory for asymptotically-stable plants is developed. Unstable pla,-ts with asymp-

totically- stable hidden modes are also extensively treated.
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Introduction

A body of literature has evolved which is concerned with the placement of closed-

loop eigenvalues and/or the question of decoupling in multivariable systems [1 ]-[1 1].

Attention is turned in this paper to the broader question of realizing specified rational

transfer matrices. A standard feedback configuration is considered and attention is

restricted to linear, time-invariant, finite-dimensional, real, dynamical plants. Spe-

cifically, the standard feedback configuration shown in Fig. 1 is studied. It is assumed

u Controller Plant y

; ~Feedback Net•work

S~f

Fig. 1. Standard Feedback Configuration

that the plant, controller, and feedback network possess, respectively, the real state-

variable descriptions

Sx =Fx + Gu (u)
-p P-p P-P

! •yp H x +J u (2)
- P~P p-p

x F x +G u (3)-c c-c c-c

an H x~ +J u *(4)

S~and

Sf fxf± Guff (5)

Y f Hf" Jfuf + (6



* - ......... ..... .... . . ....

As a result o• the interconnection of plant, controller, and feedback network in

the configuratioi, of Fig. 1 it follows that

ýc=U -If ,u(7)

!p Yc (8)

p (9)

The sizes of the matrices in (1) through (6) are determined by the dimensions of the
vectors xp, up yp, xct etc. The symbols used to denote these dimensions are:

V = dimx , (10)

v = dimx - (11)

•f = dimx , (12)

n z dim y dirn y =dimuf, (13)

m = dimup = dimy , (14)

r z dimru dimu C dimnyf (15)
- -c -f15

It follows from (1) through (6) that the a x m plai.t transfer matrix P(P), the

m x r controller transfer matrix "(s), and t'ie r x n feedback network transfer ma-

trix F(s) are given by

P(s) H(sI 1F ,P

C"(s) 1 10c c - -l G + j , (17)

and
F(s) Hf(sl, - Ff) Gf + J1  , 

(f81

[It is evident from (16)-(18) that the symbol used in this paper for thf. k x I identity
matrix is I. ] The transfer matrix relating the transform of the output, V(s), tu the
transform of the input, U(s), is easily shown to be

T(s) P(s)C(s)[I r+ F(s)P(s)C(s)f"

(I n+P(s)C(s)F(s)]" P(s)C(s) ., (19)
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Clearly, (19) is meaningful if and only if (hereafter denoted iff)

detrlr +F(s)P(s)C(s)] = det[1n +P(s)C(s)F(s)] 0 0 (20)

Moreover, it is desired that the basic feedback configuration be dynamical. It is shown

in [12] that this is the case iff

lim T(s) = finite matrix (21)
S-'

or, equivalently,

det[1r +F(-)P(-)C(c)] = det[1r +JfJpJc] 1 0 (21)

Practical arguments are also given in [12] which justify the limitation of the develop-

ments presented here in accordance with the following four restrictions:SR 1 . The number of plant inputs m equals or exceeds the number cf plant

outputs n. i.e., m > u,.

R,. The number of system inputs r equals the number of system outputs

n: i.e., r=n.

R 3 . The normal rank of P(s) is equal to the number of its rows: i.e.,

normal rank P(s) =.n.

R 4. The m x n controller matrix C(s) is chosen so that the square n x n

matrix P(s)C(s) has normal rank n: i.e., det[P(s)C(s)] A 0.

The first significant c ontribution of the present paper is best described with the

aid of the following definition.

Definition 1: An n x n rationa' matrix T(s) is said to be realizable for P(s) if

for some choice of asymptotically-stable dynamical controller and feedback net-

work the standard feedback configuration of Fig. I is a dynamical asymptotically-
stable system possessing the transfer matrix T(s).

The necessary and sufficient conditions which T(s) must satisfy in order that it
1-e realizable for P(s) are derived here for the case in which the plant is asymptotically

stable and rank P(jw) = n for all w infinity included. It is shown for this case that the

limitations on the realizable T(s) are due to the nonminimum phase properties of the

plant. These properties are completely characterized for asymptotically-stable plants

by the plant structure matrix which is introduced in the sequel.

The se-ond significant contribution is the treatment of unstable plants whose un-

controllable and/or unobservable modes ("hidden modes", are asymptotically stable.

* The normal rank of a rational matrix is the order of the largest minor which is not
identically zero.
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It is shown that any unstable plant with asymptotically-stable hidden modes can be

stabilized with a modified dynamical observer of the Luenberger type r2i. [13J-[191.

Moreover, the structure matrices of the original and modified plant are shown to be

strictly equivalent and the implications of this fact are thoroughly discussed.

The notation used in this paper is now summarized for easy reference, and some

basic notions associated with a matrix function of a complex variable "s" are defined.

For an arbitrary matrix A the transpose, the complex conjugate, the complex con-

jugate transpose, the inverse, the trace and the determinant of A are denoted by

A',A, A*, A- tr[A], and detA, respectively. A diagonal matrix A with diagona'

elements X•I I2 I I V n is written as A = diag[Xl, t2P ... XnI Column vectors are

represented by x, y, etc., or in the alternative fashion x = [x. x xnI' whenever it

is desirable to indicate the components explicitly. The n x n identity matrix, the n x n

null matrix, the n-dimensional zero vector, and the n x m null matrix are denoted by
1n, 0 n, on, and 0 n, m, respectively. The n-dimensional columnt vector with unity
element in the i'th row and all other elements equal to zero is denoted by e) or

simply e; when no confusion is likely to result. The right inverse of a p x q matrix
A is the q x p matrix A" 1 which has the property AA- 1 = 1 p.

A matrix A(s) is rational when each of its elements is a rational function of s.

When every element of a rational matrix is finite at infinity it is called a proper ma-

trix. The matrix A(s) is analytic in a region of the complex s-plane when each ele-

ment of the matrix is analytic in the region. A point sO is a pole of A(s) when some

element of A(s) has a pole at s = s A(s) is said to be real if A(s) = A(s). When the

order of the largest minor of A(s) not id( itically zero is v, then A(s) is said to have

normal rank equal to v. Finally, the notation

A,(s) = A (-s) (23)

is used which for real matrices - the only kind of interest here - reduces to

Aj(s) A'(-s) (24)
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Stability of the Standard Feedback Configuration

The basic requirements imposed on the overall system in Fig. 1 are that it be

dynamical and asymptotically stable. Conditions for the former to be true are stated

in the introduction. The latter requirement is discussed here. The first careful treat-

ment of the stability question for multivariable feedback c(cntrol systems is due to

Chen [20]. Applications and extensions of Chen's results a e given by Youla [12].

Youla established for the standard feedback configuration of Fig. 1 the following theorem.

Theorem 1: When (22) is satisfied, the standard feedback configuration is

asymptotically stable iff the scalar function

6(s) = A c(s)A p(s)Af(s) det[ln + P(s)C(s)F(s)] (25)

is free of zeros in Re s > 0. In (25),

Ac(s) = dtt(sl - FC) , (26)
c

Ap(s) -- det(slV - F) , (27)
p

and

Af(s) = det(sl f- Ff) . (28)

-Iheorem 1 indicates that in general one cannot determine stability of the standard

feedback configuration solely from knowledge of the transfer matrices C(s), P(s), and

F(s). One must in addition have knowledge of Ac (s), Ap (s), and Af(s) which ciepend on

the internal structure of the individual system components. Fortunately, however,

practical considerations permit simplifications. Firstly, the controller and feedback

network are in accordance with De 1 niit'on 1 to be asymptotically stable. Thus, both

Ac (9' and Af(s) are free of zeros in RC s > 0. Secondly, it is shown below that one

can write

A (s) =h (S) J. (S, (29)
p "I P

where hp (s) is a polynomial whose zeros are associated with the hidden modes of the

plant and _(s) is the characteristic denominator of P(s): i1 e, , (s) is the monicp p
least common multiple of the denominators of all the minors of P(s) when these minors

are expressed as the ratio of two relatively prime polynomials. Obviously, for every

practical plant hp (s) is free of zeros in Re s > 0. Otherwise,- it is not possible for the

overall system to be asymptotically stable. It now immediately follows from Theorem 1

that

ii 5



Theorer-. 2: When (22) is satisfied, when the hidden modes of the plant are

asymptotically stable, and when the controller and fe,:dback networks are

asymptotically stable, then the standard feedback configuration is asymptotically

stable iff

)0(s) p * (s) det[ln + P(s)C(s)F(s)] (30)P

is free of zeros in Re s > 0.

Theorem 2 is significant in that the test fjr stability embodied in it can be

carried out solely from knowledge of the transfer matrices C(s), P(s), and F(s).

It is now established that (29) is a valid decomposition. The result follows from

the fact (see [21] and Theorem 5-19 of [22]) that there exists a real nonsingular ma-

trix K and square matrices F p and such that

0 FF F3 2

Fp K-I K (31)

1 V21 0 22 F33

SOK, 3 (32)

and

Gp Ga (33)

where H is n x v , G is v x m, and

v) +v% +v% =v% . (34)

P l  
P2  

P 3  
P

Moreover, IFp, G p is a completely controllable pair, IF p H 1 is a completely ob-

servable pai:, and

P(s) p (si -F ) G p +J p (35)
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In addition,

*p(s) = det(slv P Fp) (36)

and one can easily establish from (31) that

& p (S) = *p(s) dettslv - F 2 2 ) det(slv - F33) (37)

or

h p(s) = det(slv -. F 22) det(sl - F33) (38)

P2 7



Nonminimum Phase Properties

The objective in this section is the establishment of those properties of the given

plant which prevent the realization with F(s) = 0n of an arbitrarily seecified rational

transfer matrix T(s). These properties are referred to as the r-nminimum phase

properties of the plant. With F(s) = 0n it immediately Zollowb from Theorem 2 that

the overall system cannot bn asymptotically stable uniess * p(s) is free of zeros in

Re s > 0. Hence, closed-right-half-plane zeros of * p(s) contribute to the nonminimum

phase properties of the plant.

When F(s) = 0 thenn

T(s) = P(s)C(s) . (39)

A necessary condition for T(s) :- 1 to be realizable for P(s) is, therefore, that
n

C(s) = P-I(s) , (40)

where P- 1 (s) is the ri~ht inverse uf P(s). Since C(s) must be analytic in Re s > 0,

equatiotn (40) indica.:-s that P-1(s) must be analytic in Re s > 0. This is never possible

when the rank of P(s) is lesE than n, the normal rank of P(s), in Re s > 0. Thus, in

Re s > 0 any decrease in the rank of P(s) from its normal rank also contributes to the

nonminimum phase properties of the plant. The nonminimum phase properties cited

ab-ve are shown in this paper to be those properties of the plant which restrict the

iass of transfer matrices that can be realized.

When tp (s) is free of zeros in Re s > 0, the nonminimum phase properties of the

plant are completely characterized by the plant structure matrix

T' (s)EA J p ~ H (41)
p pI P11

Tbht this is the case follows from the identity

An A sl P(s) 0

"•Pl n,'42
1 . r(s) = . A . (42

Pi PF-si \p 1V

OIl plPIPs Pl

It is clear front (36) that the inverse in (42) exists for Re s > 0 when p (s) is frec o-
zeros in Re s > 0. In this ca -, then, it immediately follows from (42) that

I Lk F(s) = v + rank P(s), Re s > 0 (43)
P8
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Plant structure matrices are utilized in the sequel when the unstable plant is con-

sidered.

It is possible to factor any plant transfer matrix into the product of tw i matri'.es,

one of which accounts for the nonminimum phase properties of the plant. This factori-

zation and its properties are no-, discussed. Given any n x m plant transfer -matrix

P(s) of normal rank n one cat always write provided the rank of P(jW) is n for all

finite W that

P(s) = V(s)P (s) ,44)
0

where the n x m matrix P 0 (s) together with its right inverse P01(s) are analytic in
0 0

Re s > 0 and the n x n matrix V(s) satisfies

V*(s)V(s) = 1 . (45)n

The above stated results follow easily when Theorem 2 of [23] is applied to achieve

the spectral factorization

G(s) = P*(s)P(s) = Po*(s)Po(6) (46)

It is not difficult to verify that the m x m matrix G(s) has normal rank n and that

the rank of G(jw) is n for all finite w. A "omputer program for factoring G(s) is

available [241.

The paraconjugate unitary matrix V(s) accounts for the nonminimum phase

properties of the plant. Any zeros of *p (s) in Re s > 0 are zeros of the characteristic

denominator for V(s) and the rank of V(s) decreases in Re s > 0 where rank P(s) does.

It is also useful to note that since

V(s) = P(S)P 1(s) , (47)

V(s) is analytic in Re s > a, a > 0, when P(s) is analytic in the tame region. More-

over, since P(s) is a real matrix V(s) is a real matrix, and it follows from (45) that

V,(jw)V(jWt) = V'(-jw)V(jw) = V*(jw)V(jw) = . (48)

It is easy to infer from (48) that

lim V(s) = V(-) = finite matrix (49)

In addition to the properties already cited for V(s) one has from (47) and the fact that

P0 (s) is unique to within a constant real orthogonal matrix multiplier on the left that

V(s) is unique to within a constant real orthogonal matrix multiplier on the right.

9



From (44), (45), and (49) it follows that

lira POWS) = lirn v-l(s)P(s) = lir V*(s)P(s) finite matrix (50)

The rational matrix P0(s) is, therefore, analytic at infinity. Moreover, rank P0 (s) = n

for all Re s > 0. This last property is a consequence of

P0 (s) P0 1 (s) = In (51)

For if rank P 0(s) < n for some s = s O Re so > 0, then (51) requires that Po1(s) have

a pole at s = s0. But this contradicts the analyticity ol P 0 1(s) in Re s > 0. The argu-
ments just given apply equally well at infinity provided the additional restriction

rank P(jw) = n for infinite w is imposed. In summar,, P 0 (s) is analytic and rank

P 0(s) = n in Re s > 0 infinity include when rank P(jW) = n for all W infinity included.

A method for constructing a right inverse for P 0 (s) satisfying

lim P (s) = finit- matr.x (52)
5.W0

is now given. The construction is accompAshed by introducing the change of variable

l+zs - Z (53)

This transformation maps the region Re s > 0 of the complex s-plane into the region

IzI_< 1 in the complex z-plane. Clearly, z = l+j0 is the mapping of all points in the

s-plane infinitely far from the s-plane origin. The matrix

W(z) = P0 (s)j l~z (54)
S =---

i-z

is next considered. In view of the properties of P0 (s), it follows that W(z) is analytic

in Izl.< 1 and rank W(z) = n for IzI< 1. The matrix W(z) therefore has the Smith-

McMillan representation [251, [261

W(z) = M(z)[A(z)1On, m-nIN(z) , (55)

where M(z) and N(z) are elementary polynomial matrices of appropriate size and

A(z) = diag[kl(z), ) 2(z) ... nz) (56)

The rational functions Xi(z) are all analytic in izl< 1. Moreover, %i(z) 1 0 for any z

satisfying Izz _< 1. For if the contrary is true then rank A(z) < n for some z satisfying

I zjI< 1 which contradicts rank W(z) = n in the region I zI < 1. Hence, for any real
rational matrix K(z) analytic in Iz < 1

10



W- (z) = N-(z) [ ] (z) (57)

is a right inverse of W(z) which is analytic in I zI< 1. It immediately follows that

P0(s) = W- (z)t _ - 0(8)

s+a

is a right inverse of P0(s) analytic in Re s > 0 infinity included. The above results

are summarized in

Lemma 1: A real rational proper n x m matrix P(s) of normal rank n satisfying

rank P(jW) = n for all w infinity included is expressible as P(s) = V(s)P 0 (s) wheze

the n x n matrix V(s) and the n x m matrix P 0(s) are both real rational proper

matrices having the properties:

a) V*(s)V(s) = I .

b) When P(s) is analytic in Re s > a, a > 0, then V(s) is analytic in the same

region.

c) All zeros of the characteristic denominator of P(s) in Re s > 0 are zeros

of the characteristic denominator of V(s).

d) The rank of V(s) decreases in Re s > 0 wherever the rank of P(s) does.

e) Both P (s) and P 1 (s) are analytic in Re s > 0 infinity included.
0 0_

f) P 0 (s) is unique to within a real constant orthogonal matrix multiplier Q

on the left and V(s) is unique to within the matrix multiplier Q' on the right.

11



The Main Theorem on Realizability of T(s)

For the class of asymptotically-stable dynamical plants satisfying rank P(jw) = n

for all w infinity included one can always choose F(s) = 0n and

C(s) = P 0 (s)L(s) , (59)

where the n x n real rational proper matrix L(s) is analytic in Re s > 0 but is other-

wise arbitrary. For this choice of controller

lim C(s) = P1 (-)L(-) = finite matrix , (60)
s-O 0

and any minimal realization (completely controllable and completely observable realiza-

tion) of C(s) is asymptotically-stable. Moreover,

(s) = P(s)C(s) = V(s)Po(S)P 1 (s)L(s) V(s)L(s) (61)

is realized. The tra isfer matrix T(s) is real, rational, and proper; the overall system -

plant with controller - is, therefore, dynamical. Moreover, V(s) is analytic in

Re s > 0 since P(s) is. Thus, T(s) is analytic in Re s > 0 and the system is asymp-

totically stable.

The above observations show that a sufficient condition for T(s) to be realizable

for P(s) when the plant is asymptotically stable ,a rank P(jW) = n for all w infinity

included is that T(P) = V's)L(s), where V(s) and L(s) are as previously defined. It is

now established that this structure fer T(s) is also necessary.

Multiplying (19) on the left by F(s) one obtains

F(s)T(s) 1'r + F(s)P(s)C(s) - lr][lr + F(s)P(s)C(s)]- (62)

or

F(s)rT(s) r r [Ir+ F(s)P(s)C(s)]" f)

Since F(s) and T(s) mnst both be analytic in Re s > 0, it follows from (63) that

[lr+F(s)P(s)C(s)'-i mustalso be, Thus,
T(s) V(s)P (s)C( F(sP(s)C(s)] (64)

Ta)-- sP~sCs)[1+FsPr)~~

and

L(s) P P0(s)C(s)j r+ F(s)P(s)C(s)]- (65)

is analytic in Re s > 0. Moreover, L(s) ic real and rational, and one can establish

with the aid of (22) that L(s) is -roper as well when F(s), P(s), and C(s) are real,

rational, proper matrices.

12



The above results are summarized in the following theorem:

Theorem 3: Given a dynamical plant with asymptotically-statle hidden modes
and a real, rational, proper, n x m transfer matrix P(s) having the properties:

a) Normal rank of P(s) is n < m,

b) P(s) is analytic in Re s > 0 infinity included,

c) Rank P(jW) = n for all W infinity included, then the necessary and sufficient

condition for T(s) to be realizable for P(s) is that T(s) = V(s)L(s) where

d) L(s) is any real, rational, proper, n x n matrix analytic in Re s > 0,

e) V(s) is determined by the factorization P(s) = V(s)P 0(s) described in Lemma 1.

Theorem 3 is the main theorem on the realizability of T(s). It ia restricted to
plants which satisfy rank P(jW) = n for aU w infinity included. For plants with transfer

matrices whose rank is less than n at points on the imaginary axis it is shown in the
appendix that it is possible to factor the plant transfer matrix so as to obtain

P(s) = VT(S)P q(s) (66)

where the n x m matrix Pq(s) is analytic in Re s >0 infinity included, rank P q(j w) = n
for all w infinity included, and V,(s) is analytic in Re s > 0 infinity inclu:ied. The
transfer matrix P (s) can be factored in accordance with Lemma 1 to uutiin

P q(S) = V(s)P 0(S) , (67)

where V(s), P (s), and P I(s) are analytic in Re s > 0 infinity included. Combining
0 0

(66) and (67) yields

P(s) = V,,(s)V(s)P 0 (s) . (68)

It immediately follows for the choice F(s) = 0 and C(s) = P (s)L(s), where L(s) is
n 0any real, rational, proper matrix analytic in Re s > 0, that

T(s) = VT (s)V(s)L(s) (69)

A sufficient condition for T(s) to be reali'able for P(s) is, therefore, that it be fact'-r-
able in accordance with (69). This condition is not necessary, however. Other me-
thods for factoring P(s) exist and the representation (68) is not unique.

13



Unstable Plants

The preceding developments establish for a large class of asymptotically-

stable plants the transfer matrices T(s) which can be realized with the standard feed-

back configuration. The class of plants for which P(s) is not analytic in Re s > 0 is

treated in this section. Attention is restricted to those plants with asymptotically-

stable hidden modes: only plants of this type are practical. Before proceeding, it is

important to establish certain facts which justify the procedure introduced in the se-

quel.

When P(s) is not analytic in Re s > 0, the characteristic denominator * p(S)

contains zeros in Re s > 0. It immediately follows from Theorem 2, then, that the

standard feedback configuration cannot be asymptotically stable with F(s) = 0 n. This

fact prevents the extension of Theorem 3 to unbtable plants.

A more striking difficulty with the standard feedback configuration is that the

class of T(s) realizable for P(s) can be empty for some unstable plants. A simple

example is the single-input-output plant whose transfer function is (s - 2)/cs - 1)(s - 3).

It is not difficult to establish that there exists no asymptotically-stable controller and

feedback ne 'work which yields an asymptotically- stable standard feedback configuration

for this plant. This result suggests the need for additional elements to first stabilize

the plant before including it in a standard feedback configuration. In order to handle

all cases, the additional elements should be sufficiently general so that they permit

the stabilization of any unstable plant with asymptotically-stable hidden modes. It is

shown below that any plant of the type just described can be stabilized using a modi-

fied Luenberger observer [2], [13]-[19].

In view of (31) thru (34), there is no loss in generality in assuming that the plant

has the state variable description (I) and (2) in which Fp, G p, and Hp are given, re-

spectively, by (31) thru (33) with K = 1V . The design of the modified Luenberger

observer begins with the formation of the modified plant output vectoi

yp E(y -Ju EHppx , (70)

where

E I ]i (71)

and il, i2 , * , ih are the numbers of the h linearly independent rows of H p. When

r =n o e it follows from the assumption that normal rank of P(s) is n that h n.

In general, however, rank H = h e n is possible.

The plant state vector can be written as

S[:' xx|(7Z)~P Pl~P2 P31



where

dimx = v , i-1,2,3 (73)
-Pi Pi

The objective is the design of an observer with state vector

z = Tx + e , (74)

where the error vector e is exponentially asymptotically stable: i.e., le re e
< ce"c(t0) for real constants c > 0 and X > 0 for all initial error vectors at t= to.

The observer dimension is given by

V 0 =dimz= v -h (75)

That _0 > 0 is an immediate consequence of the fact that the rank of the n x vp1 matrix
H p is at most vPI. The choice of the V0 x V.l matrix T is discussed in the follo ving
paragraphs. Before proceeding it is first noted that

yP [ r O 1Vp II x = HI x + Ha x (76)

where

H = EH (77)p p

and

Hf=EH a (78)a a

When T is chosen so that the v x V matrix [H' IT'] is nonsingular, then
p1  p1  p

-Pl TJ + Ll "1  (70)

where

ej..- a- P3 (80)E-l T. eXo

is an asymptotic estimate

liram lim x
"t-,®~Pl t-.4--Pl"

of x provided the error vector el is asymptotically stable. The asymptotic stability

of e Iis deterr iined by the behavior with time of e and x . Using (1), (31), and (33)

with K =1 immediately yields
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x = F3 3 x . (81)

Since the hiddei modes of the plant are asymptotically stable, the eigenvalues of F 3 3

all have negative real parts. Thus, 3r is eiponentially asymptotically stable.

The determirmtion of the behavior with time of e requires more work. The

dynamical part of the observer of interest is described by

A z + B +C . (82)

-p -p

Substituting (74) and (76) into (82) and assuming "hat the matrix equations

TF -AT=BH
P p (83)

TGp=C
p

are satisfied yields

e= Ae + (BHa -TFI 3 )x , (84)

when it is recognized that

= Fpx + + G u (85)-p 1l -p F 1 3 X3 ~

Since Xp 3 is exponentially asymptotically etable, it follows from (84) that e is ex-

ponentially asymptotically stable whenever A has only eigenvalues with negative real

parts. It immediately follows from the fact that FP , A ) is a completely-observable

pair that [Fp, H is also. Observer theory then guarantees that one cmn always find
p p

matrices A, B, C, and T which satisfy (83) and the requirement. that [H' IT'] be non-
p

singular and A have only eigenvalues with negative real parts.

It is important to note that the design of the observer described above depends

only on the matrices Fp,- Gp, H p, and J p. These matrices can be taken as the ones

associated with any minimal realization of the plant transfer matrix. Fortunately,

algorithms are available for generating minimal realizations starting with the plant

transfer matrix (see [22], Chap. 6). This fact is important since it shows that the

observer can be designed from knowledge of only the terminal properties of the plant.

The observer under consideration can be incorporated in a feedback loop around

the origir;.l plant as shown in Fig. 2. In the figure,

[L 1 IL 2 ] : (86)
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and

!! =y'. u'I (87)
-p

This subsystem is referred to as the modified plant in the sequel.

u x F x +Gu y
P P -p p-p p-p p

Sy =H x +J u

-p p-•= ~ ~ -p {0Pl•-=Az +[BEI(C-.BE3p1Uo

2 z+ L1 E[Il 1-j pu

Fig. 2. Modified Plant

It is now established that one can always chose the feedback matri-. KO so that

the modified plant is asymptotically stable. With

1 x x' x el] (88)

it is not difficult to verify that

F+CKo 0Xl FI + GKoLIH GKoL2
Fp +CpOK0 V P1V PZF13 +Gp K0L IHa GpK0 L2

= F 1 2 + GaK 0  F22 F 2 3 +GaKoLI Ha GaK L2

0 F 3  
0V -V -V OP3 ,VPi V OP3' V p2 F33 OVP3' #V0

0 Vo Pl OVoP BI E - TF 1 3  A

1
p

G
a

+ IV (89)

olp3  ,OIO



when (84) is recalled and it is recognized that for a properly designed observer

up= K 0  +U =K 0 (x +LIaX -t L2 e) • (90)~Pl p •3-p

The eigenvalues of the coefficient matrix of n in (89) determine the stability of the

system. It is not difficult to show that the eigenvalues of this matrix are the eigen-

values of A, F22, F 3 3 , andF +Gp K The eigenvalues of A are the observer eigen-

values which are chosen to have negative real parts. The assumption that the hidden
modes of the plant are asymptotically stable is equivalent to all the eigenvalues of F2 2

and F having negative real parts. Since (Fp, G ) is a completely-controllable pair,33 ~P
it follows that one can always choose a K0 so that the eigenvalues of Fp+ GpK0 all have

negative real parts. An algorithm for choosing the matrix K0 is described in [27].

Hence, it is always possible to make the modified plant asymptotically stable. The

above is summarized in

Theorem 4: Any real, linear, time-invariant, finite-dimensional, dynamical

plant with asymptotically- stable hidden modes can be stabilized using a suitably

designed dynamic observer.

Attention is now turned to the computation of the modified-plant transfer matrix.

It follows from (90) that

- p IK O a +r KoLIHa I Jp 0L2n + J Ii p (91)

Using the fact that the inverse of a block triangular matrix with two square blocks on

the diagonal is also a block triangular matrix of the same form one readily deduces
A

from (89) and (91) that the transfer matrix relating Y (s) to U (s) is
-p -p

A A A1 AA

P(s) = (HppJpK0)(slV -F -GK 0 )-G +J . (92)

The matrix P(s) is the modified-plant transfer matrix.

It ;.nmediately follows from the identity

p J I M K 0
I(93)

G +GpK 0-sl G F sl IV ,m I V93)

tha the structure matrices for the original and modified plants are strictly equivalent:
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i p H + pK 0
ls) (94)G p F p+ G GpK 0 - aly V

P1]

is the structure matrix for the modified plant and

Pla) A (95)G~s F -sl

* I p1

is the structure matrix for the original plant. The mcdified plant is designed to be

asymptotically stable; its nonminimum phase properties, hence, are completely
A

characterized by the structure matrix P(s). The same is not true for the original

plant when P(s) is not analytic in Re s > 0. The set of points in Re s > 0 where P(s)

has no poles is denoted by S. For all s e S it readily follows from (42) and (93) th- a

(95) that

rankP(s) = ranklP(s) - v =rank F(s) - v; = rankP(s) . (96)

Thus, for all s CS rank P(s) < n where rank P(s) < n. It is also possible for rank P(s)

to be less than n at the points in Re s_> 0 where P(s) is not analytic. The set of all

points in Re s > 0 associated with nonminimum phase properties of P(s) is, therefore

a subset of the corresponding set for P(s).

The above results suggest that the nonmi 'mum phase properties of the modified

plant are often equivalent to or less severe than -hose of the original plant. One is

tempted to conclude from this fact that the class of T(s) realizable for the modified

plant in '.he standard feedback configuration is equivalent to or larger than tXat realiza-

ble with the original plant even when it is possible to stabilize the standard feedback

configuration without resorting to the use of the molified Luenberger observer. This

point has not yet been rigorously established, however.

Some additional observation ncerning the modified plant are now made. It is

not difficult to verify using well known matrix identities that (92) is equivalent to

P(s) (H p+Jp K0)(slI -Fp)IGp(lm -K0 -(slG p I -lFp _-+ p . (97)

When the bracketed inverse in (97) is factored to the right and (35) is recalled, one

easily obtains the relationship

P(s) = P(s)[l - K0(sl -P Fp)-Gp . (98)
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Equation (98) clearly places in evidence Ithe relation.nip between P(s) and P(s).
Since P(s) is analytic in Re s > 0, the nonminimum phase properties of Pks) are de-
termined by the points in Re s > 0 where al n-order minors of P(s) are zero. The
Binet-Cauchy formula leads to the fact that each n-order minor of P(s) is the sum
of products of n-order minors of P(s) and [In-- KK0 (slv' " Fp) Glp-. It is not easy,

p p
therefore, to relate in prec.ise fashion the &onminimum phase properties of P(s) and
P(s) for nonsquare plants.

Considerable insight is obtainable for square plants. In this case m = n and it
follows from (98) that

det P(s) =det P(s) (99)
det[pn _K0(sl p p

or

det P(s) = det P(s A A (100)
det(s -F . ) det(slV F p-G pK0)pdep 1sp p0

Using (36) and

h(s) =det(slV -Fp-GpK 0 ) (101)VP1

in (100) gives the compact relationship

A t (s) detP(s)
h(s) ' (102)

By design the polynomial h(s) is free of zeros in Re s > 0. Since P(s) is a rational

matrix, it is also true that

a (s)det P(s) = (103)

where a (s) and 8p (s) are polynomials. Moreover, 8p (s) divides the characteristic

denominator p (s) of P(s):
¢'(s)

p(s) -- 3  (104)
-PT

is a polynomial in s. Substituting (103) and (104) into (102) yields

det (s) = h(s) (105)

-See page 9 and equation (19) of reference [261.

20



The zeros of detP(s) ia Re s > 0 accounit for the nonminimum phase properties

of the modified plan.. Since h(s) ;trictly Hurwitz, it follows that the zeros of

detP(s) in Re s> 0 are the zere q p(s) and X (s) in Re s >0. The zeros of L p(s) i-

.e s > 0 are the points in Re s > 0 where ran!. P(s) < n. Any zeros of 4 p(s) in Re s > 0

are a result of the fact that P(s) is not analytic in Re s > 0.

An example which demonstrates the generation of nonminimum properties in P(s)

when P(s) is unstable is easily generated. It is not difficult to verify for

P(s) 7+-l s+- (106)
s+2

that

1.(s)
S(s) 1 0 Re s > 0 (107)d, t r s+Z= 8 p(S) -

Also,

'p (s) = (s - 1)(s+ l)(s + 2) (108)

Thu 3,

4p(s) = (s - Ms+ 1) (109)

and detP(s) = at s +1.

A special case of interest is the single-input-output plant: n = m 1, Inp p
this case,

C (s)
detP(s) = P(s) = 8p-) (110)

and
Bp(s) = (s) (111)

Thus,

a a (s)
detP(s) = P(s) -- - (112)

and the nonminimum phase properties uf the modified plant are completely determine

by the zero-, of the original plant in Re s > 0.
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Conclusions

lror 41,e class of plants satisfying the conditions of Theorem 3 the transfcr ma-

trices T(s) realizable using the standard feedback configuration have been precisely

defined. Much work remains for this class of plants, however. Fundamental questions

are in need of answers. Given that T(s) is realizable for P(s) one can expect in general

many combinations of C(s) and F(s) which yield the desired T(s). Which of these com-

binations is best? One possibility is to try to determine that combination which mini-

mizes in some sense the sensitivity of the system to plant parameter variations and/or

disturbance inputs. The ideas developed in [28] and [29] may prove usefrl in this re-

gard. Another possibility is to select that controller and feedback network having the

property that the sum of the dimensions of the state vectors for minimal realizations

of both these elements is a minimum. Some preliminary results in this regard are

* contained in Chapter 9 of [22). Another possibility of course is a compromise between

the two already cited.

With regard to unstable plants the results reported here - although extensive -

must be viewed as preliminary only. Much remains to be done. Suppose it is possible

to stabilize a given P(s) using only the standard feedback configuration. What is the

class of T(s) realizable in this case without resorting to the addition of a modified

Luenberger observer? L es the addition of a modified Luenberger observer enlarge

the class of T(s) realizable in uhis same cise?

Finally, one can question the sacredness of the s~anoard feedback configuration.

* This configuration is only a special case of the system shown in Fig. 3. This figure

represents all possible plant compensation schemes. The connection network is

Compensation

Networl

Connection Plant

Network
y

Fig. 3. General Plant Compensation Configuration
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characterized by fie real, constant connection matrix M which relates the intercon-

nection of the syustcm input u and the inputs and outputs of the compensation and plant:

The connection network can include operational amplifiers and this fact permits one -
for all practical purposes - to assume that the elements of M can take on any real

value. The compensation network includes all dynamical components of the system

except the plant. Any real, linear, finite-dimensional, time-invariant, asymptotically-

stable, dynamicai system :s a possible choice for the compensation network. One can

now raise all the previous questions with regard to the admissable classes of connection

matrices and compensation networks just described for the configuration shown inIrig. 3. Work direc'•d toward answering th.ese questions is presently under way.
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Appendix

A method for achieving the plant factorization (66) is now described. It is

assumed that P(s) is analytic in Re s > 0 and rank Pjwk) < n, Wk > 0. Since P(s) is a

real matrix, it follows that rank P(-jWk ) < n.

The matrix
A

Pk(s) =n+ A-'--- + K P(s) (A. 1)

k n s-jWk 5;+jtk)

is now considered where the matrix A is selected ini accordance with the following

considerations. From the fact that rank P(jwk) < n, it follows that there exists a non-

zero complex vector b such that

b#pov k) = o0,m (A. 2)

The vector b can be written as

b = tb+jb2  (A. 3)

where b 1 and b 2 are real vectors. Two possibilities exist: e ther the vectors b1 and

b 2 are linearly dependent or they are linearly independent. The former case is

considered first.

When the real vectors b1 and b 2 are linearly dependent one can write

b'= 1" , (A. 4)
b 1 c

h-z !

where c 1 and c 2 are real scalars and the real vector a satisfies

Iala=- raa= = 1 . (A. 5)

Then

b = (c 1 +jc 2 )a = ca , c 0 (A.6)

and

b P(jwk) =Ea'P(jwk)0M (A. 7)

-nplies

a'P(jW) =o (A. 8)

The choice

A = A = aa' (A. 9)
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is now considered. Equation (A. 1) becomes

Pk(s) = Vk (s)P(s) , (A. 10)

where

Vkl(S)* In + (A. 11)

Clearly,

Vkl(m*) = lim IV(s)= I (A. 12)
Sn

and

Pk(-) =nm Pk(s) = P(-) ; (A. 13)
S ýW,

thus, both Pk(S) and Vjl(s) are proper matrices. Using the fact that

det(l n+AB) = det(m +BA) (A. 13)

for an arbitrary n x m matrix A and an arbitrary m x n matrix B, one easily obtains

from (A. 11) that

s' s+2s+ 2

detVkl(s) =det +. + : (A.s14)

Equation (A. 14) establishes that

detVk (s) = nonzero finite complex number, Re s > 0, s ± jJWk (A. 15)

Hence,

rank Pk(s) = rank P(s), Re s > 0, s ' ±jWk . (A. 16)

Equation (A. 16) is important since it shows that the set of points in Re s -> 0, s • ±jtk,

where rank Pk(S) < n is the same set of points in Re s > 0, s i +jWk, where rank P(s)
< r,.

The next point that one needs to make is that Pk(s) is analytic at s = jW k' This

fact follows immediately from
(B jW (s "jW)V;l(s)P(s), = 0 (A. 17)

k)k)k (s) k
s =jW k k
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It is also obvious from (A. 10) and (A. 11) that Pk(s) is analytic in Res > 0, s '*jwk.

Thus, Pk{S) is analytic in Re s > 0 infinity included.

The final property of Pk{s) which is investigated is rank Pk(*jwk). This is best

done by first defining in lexicographic order all the corresponding n'th-order minors

of Pk(s) and P(s). The j'th such minor of Pk{S) and P(s) is denoted by Akjý) and A4n),

respectively. It immediately follows from (A. 10), (A. 14), and the Binet-Cauchy

formula (see [261, p. 12) that

•(n, j) ..... 2~ A (n, P A.18

Since rank P(±j k) < n, it follows that for each j

S(nj) ) ; (nj) V. > I (A. 19)

(.~n, j)where nj 0 and is finite at s = jwk. Thus.

v.-I
A(n,j) (s2 +2s+W)2 Vs2 2 W 2 (n,j) (A. 2V)k=

Clearly, if for any j it is true that v k = I then there is one n'th-order minor of Pk(S)

which is not zero at s = ±jwk and rank Pk(tjtk) = n. When it is not true that v. I for

any j, then although rank Pk(+JWk) is still less than n one has reduced the order of the2

factor s2+U2k in each of the n'th-order minors of P(s) by one. The above process can

then be repeated a finite number of time - provided each time that the new vectors b1

and b2 are linearly dependent - until a matrix is obtained whose rank is n at s--±jwk.

Before considering the case in which the vectors bI and b 2 are linearly inde-

pendent, some additional observations are now made. First, the above developments

are easily applied to the case rank P(0) < n. For this case, one has immediately that

there exists a real vector a satisfying (A. 8) with 0k = 0 since P(s) is a real matrix.

The final observation is in regard to the fact that (A. 10) is not the ultimate relationship

sought. One needs instead

P(s) - Vk(s)Pk(s) (A. 21)

It is easy to verify that

2s a a
Vk(s) - ln 2 - - 2 (A. 22)

s +2S+Wk
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satisfies Vk(s) Vkl(s) = In- Equation (A. 22) exposes the fact that Vk(s) is a proper

matrix analytic in Re s > 0.

Attention is now turned to the case where bI and b 2 are linearly independent. It

is first noted that when the complex vector a i on satisfies

a P (A. 23)

then

b = c j a (A. 24)

satisfies
b*0 o~tk ', (A. 2 5)

Moreover, one can choose a so that

b*b=a* a= =1 . (A. 26)

Also, 0 can always be selected so that with 4 a real scalar

ala e= (2JOb'b U>O > (A. 27)

Thus, writing

a = ja,

where aI and a 2 are real vectors, leads to

a'~ I a 'a '.+~aa+ (A. 28)

Since u is real, it immediately follows from (A. 28) that
a'a +a' a 2a'la =0 (A. 29)

2- -12 LZ

and

al - --k (A. 30)

It is also true that

a a = a +a'a -1 (A. 31)

because of (A. 29). Adding (A. 30) and (A. 31) yields

a 1 - ) (A. 32)

Subtracting (A. 30) from (A. 31) gives
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a'ta- (--u) . (A. 33)

Now

n n

u= la'a =lI a2l< J IaiZ= laIz- . (A. 34)
i=l i=l

Hence,

0 < _ < I (A. 35)

Since (A. 33) shows that a = o when i = 1, it follows that a ;s real in this case and
-2 -nasrelithscsan

the results already derived are applicable. It is, therefore, assumed in the sequel

that

0 < < I (A. 36)

The choice

A a a (A. 37)

in (A. 1) is now considered. With this choice

Pkls) = Vkl(s)P(s) , (A. 38)

where
-1 ( aa* a

Vkl(s) n + +- + (A. 39)

Now
* I , ,.

aa = (alal+aa')+j(a.a -ala') (A.40)

and

aa' = (aa*) (A. 41)

Thus, (A. 39) becomes

[ 2Sall+a~a) 2kala'2 "-a~a"1)

vk 1(s) -[Iin !,+ ! Z) + ...k.- (A.42)s + Uk s2 + Uk). 2

k +k

Clearly,

Vk-(=) = limrV (s) = 1 (A. 43)
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and

P = lirn Pk(e) = P(in) (A. 44)

-1•

thus, both Pk(a) and Vk (s) are again proper matrices.

As before, the determinant of Vkl(s) is of interest. Now, however, more work

is required in order to evaluate this quantity. The computation is facilitated by con-

structing the orthogonal matrix

= [q2 "" ... a (A.45)

where

Sq, (A. 46)

and

= (A. 47)

That and q2 are orthogonal is an immediate consequence of (A. 29). It is alpo clear

from (A. 32) and (A. 33) that
Iqll~l I Uqzl= I . (A. 43)

It now follows that

( Q Q+ )[l ] q(1 -: - 'J C [ , (A.49)

r + (1+L)s s____'2n

1+ 2+) s2
wk + k

'+ :-k --i (1.Os •, n-+

s 2 2 + 2 2
S+Wk k (A. 50)

0 n-2, 2 n-2
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Since

detVkl(s) = det[Q'V; (sIQJ , (A. 51)

one easily o, .Žus from (A. 50) thal

2 2 2+

det Vki(s)"k = k 52 (A. 52)
k ~ s Z+ WkZ

k

Now 0 < u < 1 and it follows from (A. 52), there(ore, tnat

detVk (s) = nonzero finite cemplex number, Re s > 0, s +jWk . (A.53)

Hence,

rank Pk(S) = rank P(s), Re s > 0, s ' +jwk (A. 54)

just as in the previous case considered.

From (A. 38) and (A. 42) it is clear that Pk(s) is analytic in Re s > 0, s ± ijwk.

It is now established that Pk(S) is analytic at s = ±jwl, as well. One has from (L. 42)

that

-Zs(alal + a . Wkala -a
jWk)Vk (s) = (s + jWk)ln + (s Wjk) + (s k (A. 5+5)

Hence,

(s-jwk)Vkls = (a 1 . +aZa2 ) + aj -a a) a* (A. 56)

and

(s+jWk)Vk l(s)= = (aa1 +a.a')-Jaa -aaa' (W) . (A. 57)

Since (A. 23) also implies

a* P(j wk)- a -•'P(-jwk) (A. 58)

one readily concludes from (A. 56) and (A. 57) that

(8 + jiUk)V," (s)P(s) I = 0 (A. 59)

Thus, Pk(s) is analytic in Re s > 0 infinity included.
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The final property of Pk(S) which is investigated is rank Pk(*jwk). Instead of

(A. 19) one now obtains

Pk02 + 2

Since 0 < u - 1, all of the discussion following (A. 18) is again appeicable. Moreover,

now when rank Pk(+Jwn) < n one ia assured that the process co i be repeated.

The last item requiring consideration is the computption of Vk(s). Clearly,

-1
Vk(s) = Q[Q'"¢k(s)Q1 Q' , (A.b ,)

or from (A. 50)

-s 7-+ ( I- u os + Wk Wk 1rf -u 2

d(s) d(s)
0 2, n-2

r 1.47Q Wk -l-U2 s +(I+)s+

dFs) d(s) _,_(A. 62)

On-2, 2 ln-2

where

d(s) = s2+Zs+w + (1- 2 (A.63)

Since Q is a real finite orthogonal matrix and since 0 < U < 1, one has that Vk(s) is

analytic in Re s > 0 infinity in(luded.

One case remains to be considered. It is the one in which rank P(j0) < n. The

matrix

P.(s) = v-I(s) P(s) (A.64)

is considered where

V~ (s) = (1 + aa s) (A.65)
O(s=On - -

The real vector a is one which satisfies Ila l = 1 and

aP(jW) = a'P() = o' (A.66)
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..

Clearly,

lira iP(s) = lira aa' P(s) = 0 (A.67)
.... -- nm

Thus, P.(s) is analytic at infinity or, equivalently, P,,(-) is finite. That is, P.(s) is

a proper matrix analytic in Re s > 0.

It readily follows from (A. 65) that

t = 1+s . (A. 68)

Hence, for all finite s i -I it follows that

rank Pk(S)= rank P(s) (A. 69)

Moreover, in piace of (A. 18) one now has

A(n, j) = (s+ 1)(nj) (A. 70)

The minor A(n, j) is a rational function of s and the degree of the denominator poly-p
nomial is less than the degree of the numerator polynomial for all j. Because of

(A. 70) it is clear that the difference between the degrees of the denominator and

numerator polynomials of Ap' i) is one less than the same difference for A (n J)
- p.

Hence, either rank Pro(O) = n or the process indicated here can be repeated a finite

number of times until a matrix with rank equal to n at infinity is obtained.

The final item requiring consideration is the computation of VC(s). It is easy

to verify that

aa sV.(s) = In - =_ (A. 7 1)

Clearly, V,(s) is a proper matrix analytic in Re s > 0.

Given a plant transfer matrix P(s) there is at most a finite number of points on

the imaginary axis of the complex s-plane at which rank P(s) < n. This is so because

P(s) is rational and has normal rank n. Repeated applications of the factorizations

described in this appendix then leads to

P(s) a Vk(S) Pq(s) (A. 72)

where P (s) and
qq

VI (S) = n Vk(S) (A. 73)
k=1

are both proper matrices analytic in Re s > 0 and rank P q(jW) is n for all w infinity

included.
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